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Introduction 

Course-based undergraduate research experiences have attracted a lot of interest from instructors 

recently because of their association with higher completion rates of Science, Technology, 

Engineering, and Mathematics (STEM) degrees (Rodenbusch et al., 2016) and evidence that these 

experiences can encourage interest in higher education, especially for students in underrepresented 

groups in STEM (Bangera & Brownell, 2014). Students that participate are exposed to many 

important aspects of scientific research: generation of new knowledge, with several of its associated 

tasks, such as replication, verification, communication, summarizing, graphing, interpreting, and 

making conclusions (Dolan, 2016). Course-based research allows an instructor to include a greater 

number of students in authentic research than they would be able to accommodate in their research 

lab (Bopegedera, 2021; Shortlidge et al., 2017). In addition, students take pride in being part of a 

collaborative research effort (Jones & Lerner, 2019), or being engaged in research that is relevant to 

their own communities (Adkins-Jablonsky et al., 2020). The data collected from these course-based 

research activities are sometimes published in scientific journals (Dubansky et al., 2013; Porter et 

al., 2017), or used as pilot data for grant applications (Bakshi et al., 2016; Shortlidge et al., 2016), 

which is an added benefit for both the students and instructors.  

 

However, if data collected by students as part of course-based research are to be published, the 

data must be reliable. Students involved in evaluating a hypothesis may be motivated to find the 

“correct” answer that supports the hypothesis they are testing, which is an example of “confirmation 

bias” (Nickerson, 1998), rather than finding the answer that supports the data. It has been 

suggested that hypothesis testing would be less likely to result in confirmation bias than 

interpretations of behavior from observational studies, but Balph & Balph (1983) provided several 

counterexamples from the literature and concluded that hypothesis testing does not by itself provide 

protection against confirmation bias. Inexperienced undergraduates were found to exhibit 

confirmation bias more frequently than more experienced researchers (Beattie & Baron, 1988), 

although this was not evaluated for course-based research. Confirmation bias has been evaluated in 

a number of scholarly disciplines (Hergovich et al., 2010; van Wilgenburg & Elgar, 2013), but to our 

knowledge has rarely been evaluated in the context of course-based student research (for an 

example see Marsh & Hanlon, 2007). 

 

We evaluated whether students tend to collect data that support a hypothesis, whether consciously 

or subconsciously, by developing a simple course-based research project in which we provided the 

students with different hypotheses for testing. If the collected data show such a bias, this suggests 

that mentorship of students should include a discussion of confirmation bias and how bias can be 

minimized. The course was an online laboratory on image analysis in biological research. Early in the 
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course, students had learned about the challenges of interpretation of sizes of three-dimensional 

objects from two-dimensional image representations. They learned that the apparent length of an 

object would be affected by its orientation with respect to the camera/sensor collecting the image. 

For example, a pole would appear longer when viewed at a right angle than when tilted with respect 

to the camera. For the research project, the students needed to use their skill of making 

measurements on digital images and their conceptual understanding of geometric projections. 

 

The research project involved measurement from images of a sensory structure responding to a 

mechanical stimulus. If a long sensory structure such as an insect antenna or mammalian whisker 

bends in three dimensions during tactile sensing, this changes the way in which information is 

collected by that sensory structure (e.g., Yu et al., 2019). The task for the students involved in this 

research project was to trace a long insect antenna before and during bending (a set of static 

images). Students were randomly divided into small groups; half of the groups were told that they 

were evaluating whether an antenna appeared to change in length during bending (unspecified 

whether the change in length was to shorten or lengthen), and half of the groups were told that they 

were evaluating whether an antenna appeared shorter during bending. To evaluate accuracy, we 

compared the student measurements of length with our measurements. In order to estimate 

possible bias caused by expectations, we compared the student measurements of length between 

the two sets of groups (given the two different hypotheses to test). This research project included 

many of the components expected in course-based research experiences, such as analyzing data, 

making interpretations, communicating results, and collaborating (Auchincloss et al., 2014; Dolan, 

2016) but did not include opportunities for students to generate their own hypotheses or design the 

project. Giving the students that option in this project would have prevented us from evaluating 

confirmation bias, which we hoped would provide useful knowledge in informing mentorship 

practices. 

 

Methods and Materials 

The course-based research project was one set of assignments given over a couple of weeks within 

one course. A total of 113 students in three different sections of the same course (i.e., “Image 

Analysis in Biological Research Laboratory”) participated in this study. The three different sections 

were offered during three different quarters, all during the time of the pandemic (Winter 2020 -- 

Winter 2021). The course had already been developed and approved as an online course prior to the 

pandemic, and therefore the mode of instructional delivery of this course was not impacted by the 

pandemic. Most of the students were seniors, and the most common major was biology. 

 

Students were randomly assigned to groups of three or four. There were 10–12 groups in a section 

of the course. Each group of students within a course section was given a different set of eight 

images depicting the same insect with its antenna in different configurations (straight or bent) 

(Figure 1). The same sets of images were used in each of the three sections, so each image set was 

measured by a total of 9–12 students (combining the three sections). Prior to taking the 

measurements, half of the groups were given the hypothesis to test that the antenna would be 

shorter when bent, and the other half were given the hypothesis to test that the antenna may appear 

to change length when bent without specifying whether shorter or longer). The instructions and 

background information given to the two sets of groups were otherwise identical, including a null 

hypothesis of no change in length during bending. Each student independently measured the length 

of the antenna for each of the eight images using the segmented line selection tool in ImageJ/Fiji 

and reported the lengths by uploading their data in their own table (template supplied to students) 

using units of pixels (1 mm real world unit = 11.67 pixels for these images). Students had prior 

training in the use of this ImageJ tool for taking measurements in images during the course as part 

of previous assignments. After all the students in a group had taken their measurements, their data 
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were summarized and graphed by the instructor and the students had an opportunity to compare 

their data with their peers. 

 

Figure 1. Example of images provided to students (left: straight antenna; right: bent antenna; 

bottom: examples of tracings done by students for determination of antennal length) 

 

 
 

During the final section (Winter 2021), a survey was conducted to evaluate student expectations. 

The survey was conducted after students had read the instructions but prior to viewing the image 

sets or taking any data. The survey had a single free response question, in which students were 

asked to briefly describe their expected outcome with regard to the hypothesis they were given. The 

question prompt assured students that they would receive full credit for completion of the survey, 

regardless of whether the results matched their expectations. Responses were categorized into three 

expected outcomes: 1) shorter when bending, 2) no change in length, or 3) unspecified change in 

length (e.g., “the antenna will appear to change length”). For analysis, the responses were grouped 

into “shorter when bending” and “other response.” 

 

All statistical analyses were performed in SAS 9.4. Mixed models were performed using Proc Mixed, 

with the hypothesis as the fixed effect. A single student measured multiple images, and therefore a 

student identifier was included in a random statement as a term to be included in the mixed model. 

Although individual student had a significant random effect (p < 0.05), its removal from the model 

had a negligible effect on the significance of the model. A single outlier was removed from the 

analyses because it was an error (i.e., the number recorded for length was off by a factor of 2 for a 

single image by a single student). Normally the complete range in values measured was ±3% of the 

mean. Outliers were identified in Proc Boxplot using the default criterion: being more than 1.5 times 

the interquartile range below the lower quartile or above the upper quartile. Fisher’s Exact test was 

performed using Proc Freq (with option chisq). 

 

This study was performed with approval from the University of California, Irvine Institutional Review 

Board (HS#2018-4211). As this was treated as exempt research, all students were automatically 

enrolled in the study, and no written consent was obtained. A study information sheet describing the 
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purpose of the research in broad terms without identifying the research question was provided to all 

students and posted on the course website. All students were given the option to have their data 

removed from analysis. No students chose to opt out of the study. 

 

Results 

Survey Responses 

Students' responses were affected by the hypothesis that they were given to test. When students 

were given the hypothesis that the antennae would be shorter when bent, students were more likely 

to respond that they expected the antenna to be shorter than the students given the alternative 

hypothesis (p = 0.008, Fisher’s exact test, n = 47) (Figure 2). This result by itself is not an indication 

of confirmation bias, because it demonstrates expectations prior to taking data. But it does show 

that the students are primed for possible confirmation bias, simply by the wording of the hypothesis 

being tested. 

 

Figure 2. Student responses to a survey asking for their expected outcome (n = 47)  

 
Notes: Students took this survey after reading the instructions which included the hypothesis that 

was being tested, but before taking data. “Other” responses include expectations other than 

shortening, such as not changing or lengthening. 

 

Length Measurements 

Student length measurements showed good precision. The average range in the length 

measurements for a single image was 22 pixels (n = 80 images), which is about 6% of the 

corresponding length. Any single image was measured independently by 9–12 students (3–4 

students in each of three course sections). These numbers do not include the one extreme outlier 

discussed in Methods and Materials. Student data were more variable than length measurements 

made by the two instructors. The average difference in the two length measurements made by the 

instructors for a single image was 1 pixel (with a maximum difference of 10 pixels). 

 

Confirmation bias in measurements would result in an inflated (i.e., more positive) value for the 

decrease in length at bending (i.e., length before–length bent) for the students testing the 

hypothesis that the antennae shorten during bending. The data were consistent with a hypothesis-

driven confirmation bias. The decrease in length measured by the students, normalized to the 

instructors’ measurements for the same images, was 4 pixels larger on average for the students 

testing the hypothesis that antennae shorten during bending. This small difference between groups 
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was significant in the mixed model with hypothesis as fixed effect (p = 0.029 including student as a 

significant random effect; p = 0.001 without student as a random effect). 

 

Outliers 

Some of the lengths reported by students were sufficiently different from the average or expected 

values for that same image that they could be considered outliers (Figure 3). Forty-one outliers were 

identified out of the 451 measurements (see Methods and Materials section for details of outlier 

identification). We reasoned that outliers might provide the strongest evidence of bias, and therefore 

did not remove them from analysis except for one extreme outlier that appeared to be a mistake that 

is discussed earlier in this manuscript. 

 

Figure 3. Box plots of the length differences measured by one example group of students  

 
Notes: Each group measured length differences for one set of four image pairs. The decrease in 

length when bending was calculated by subtracting the bent length from the straight length, and 

then normalized by subtracting the average of the instructors’ measurements. Therefore, a 

normalized decrease in length of zero would indicate a match between the student’s and instructors’ 

measurements. A normalized decrease in length greater than zero indicates a larger decrease in 

length than measured by the instructors. Outliers are indicated by blue arrows. 

 

However, the outliers were not significantly different in the two hypothesis groups (mixed model p = 

0.94). In fact, the trend in the outliers was not in the direction that would support bias and was very 

trivial in magnitude, given that the average difference in the change in length was smaller than 1 

pixel between the two groups. Therefore, the outliers by themselves are not evidence of bias 

between the two hypothesis groups. 

 

Discussion 

The data collected and reported by the students were influenced by the hypothesis that they were 

testing and therefore provide direct evidence of bias during data collection. This result suggests that 

educating students about confirmation bias should be part of the mentoring that occurs in the 

classroom, and that instructors should be very cautious about using course-based research data in 

publications. While statistically significant, the magnitude of the bias was fairly small, which is 

consistent with results reported by Marsh & Hanlon (2007). 

 

Variability and Reliability of Student Data 

The student data were somewhat variable, with 10% of the measurements identified as outliers, 

notwithstanding the simplicity of the measurements. However, despite this sizable number of 
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outliers, the overall average coefficient of variation in length measurements was only 2% (averaging 

the coefficients of variation for 80 different images, each of which had 10–12 student replicates), 

which suggests a high degree of precision. The outliers did not appear to be examples of 

confirmation bias, because the direction of the outlier deviations was not in concordance with the 

hypothesis-driven expectations. Therefore, the outliers appeared to result from ordinary error: 

inaccuracy or imprecision, either at the level of tracing or reporting.  

 

The most obvious way in which a biased length could be generated consciously or subconsciously 

when tracing length in an image is by selection of the starting and ending points of the trace while 

using the tracing tool. While measuring length might seem unambiguous and unlikely to be 

susceptible to bias, Kozlov and Zvereva (2015) documented confirmation bias in measuring lengths 

of leaves (i.e., half-widths on either side of the midrib to estimate asymmetry) by experienced 

scientists. They attributed the source of the length bias to the positioning of the line segment used 

for the length measurement (e.g., not completely perpendicular to the midrib), or to subconsciously 

rounding the measurements in the expected direction. Rounding direction as a source of bias is 

discussed by Craig (1992). 

 

While there are relatively few publications evaluating the reliability of student data, one published 

study found that the data taken by high school students were quite close to measurements made by 

the instructor. For example, the means for measured water temperature differed by no more than 

0.7°C (Fogleman & Curran, 2008). In this latter case, confirmation bias is less likely to be an issue 

because these students were collecting data in the absence of prior expectations, although other 

sources of error could still occur.  

 

The focus of much of the literature on course-based research experiences is on best practices for 

developing course-based research or evidence for how course-based research can benefit students 

(e.g., Bell et al., 2017), leaving the accuracy in student data largely undiscussed. However, Dolan 

(2016) does recommend that course-based research experiences should include checks for data 

quality. Price et al. (2020) provided training for the students to ensure that they were taking data 

accurately. And Wiley & Stover (2014) found that students engaged in course-based research were 

more motivated to spend more time and did a better job on their reports if they had the opportunity 

to publish their data online, although they did not assess the accuracy of the student-collected data. 

We suggest that accuracy in data collection should be a central topic covered in mentoring of 

students as part of course-based research. 

 

Using Student Data in Publications 

One of the main motivating factors for faculty developing course-based research experiences for 

their courses is the ability to publish or use the data as pilot data for grants (Shortlidge et al., 2016). 

However, if the students’ data collection is biased, then the data would not be suitable for 

publication, or sharing outside the classroom. Students typically do not have a stake in the 

publication of the data, so they are unlikely to be motivated to knowingly alter data for purposes of 

publication. However, they may feel there is one “correct” answer and subconsciously take or include 

measurements that fit that answer. This concern is supported by the results of our survey, which 

demonstrated that students' expectations for their data were significantly affected by the hypothesis 

that they were given to test. In addition, students' data were significantly more likely to support their 

given hypothesis. If students have a preconceived idea of what the outcome should be, they are 

likely to assume their data collection is accurate if it meets their expectations without doing any 

critical assessment of their result (Alaimo et al., 2014). For this reason, particular caution should be 

taken for course-based research activities in which the student is asked to collect data for a 

hypothesis or question with an implied expectation (e.g., “Are antennae shorter when bending?”) 

which are likely to be more susceptible to confirmation bias than projects in which the question 
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addressed does not imply an expected outcome (e.g., “How long are these antennae?”). Null results 

are generally harder to publish (Fanelli, 2012; Merrill, 2014), which provides additional incentive to 

collect data that reject the null hypothesis if publication is an intended goal. Instructors are aware of 

this publication bias which may subconsciously influence what they imply about the study outcome 

to the students. 

 

How to Minimize Confirmation Bias 

While confirmation bias has rarely been addressed explicitly in the context of course-based research, 

the topic of confirmation bias and its causes has been discussed in many scientific and social 

science studies (e.g., Hergovich et al., 2010; Marsh & Hanlon, 2007; van Wilgenburg & Elgar, 2013). 

Factors that contribute to confirmation bias include non-blind experimental design, prior 

expectations formed by the researcher, or reluctance to contradict previous studies (Marsh & 

Hanlon, 2007). In course-based research, the studies are typically not blind, and while the students 

may not have formed their own prior expectations, the instructor’s experimental design, grading 

method, or how the hypothesis is presented may bias the student. 

 

With respect to course-based research activities, bias may be avoided or minimized by several 

approaches, although not all approaches are suitable for all projects. 

1. Use blind studies as appropriate (e.g., the students are unaware of which sample is which). 

2. Avoid giving students the sense that they will be penalized if they get the “wrong” answer. 

3. Verify results by having different students work independently to make the same 

measurements. 

4. Discuss confirmation bias with the students as an important phenomenon that must be 

avoided to protect the integrity of scientific research. 

5. Use a hypothesis that is not “leading,” or otherwise guide the students in data collection 

without “leading” them to a particular result. 

 

Addressing Confirmation Bias During Mentoring 

Professional development is an important part of effective mentoring in undergraduate research 

(Shanahan et al., 2015). Part of professional development for undergraduate students in research 

should include discussion of the importance of generating and sharing reliable and accurate data. 

Students might be unaware of the potential for unexpected biases to creep in. Informing them about 

bias makes it more likely to avoid. In addition, learning about how different experimental designs 

may be used to minimize or avoid bias and other forms of error is an important part of scientific 

education. Including these topics will benefit both the instructor and the student because it 

encourages the student to think critically about how data are collected and analyzed and makes it 

more likely that data would meet the standard for publication. In large research universities, 

undergraduate students may receive more face-to-face instruction during course-based research 

from their graduate teaching assistants than faculty members (Heim & Holt, 2019). Under these 

circumstances, it would be helpful to incorporate a plan for addressing confirmation bias directly into 

the course structure for consistency. 

 

The intent of this study was to evaluate whether confirmation bias occurred in the context of a short 

research project embedded in an undergraduate course. Now that we have documented 

confirmation bias, this provides rationale for its inclusion in a mentoring plan. Based on our results, 

we have specific recommendations for mentoring. There are different approaches that could be used 

to mentor students about confirmation bias. One approach is to discuss a paper that documents 

confirmation bias with the students. Possible papers include Kozlov and Zvereva (2015), Marsh and 

Hanlon (2007), or van Wilgenburg and Elgar (2013). Questions to ask students during discussion 

could include:  
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1. Would you be surprised if the data you collected was influenced by the hypothesis that you 

were testing?  

2. How do you decide which data to include and which to discard (e.g., outliers)? Could this bias 

your results? 

3. What are ways to reduce bias? 

 

A second approach is to allow students to experience their own confirmation bias collectively, by 

explicitly sharing their results after data collection (as was done in our course). A direct experience 

like this can be particularly impactful, as it is easy to persuade oneself that collecting data is 

objective and therefore not susceptible to bias, and evidence of confirmation bias is likely to be a 

surprise to the students. When students share their data, it is important to avoid shaming or 

embarrassing. Students should be mentored to understand that there is variation in data (e.g., 

hence the need for replicates), that everybody occasionally makes mistakes, and that confirmation 

bias can occur, even to experienced scientists. In addition, students should be taught that if their 

data are very different from that collected by others, this could be a learning opportunity as they 

examine the possible cause of this difference. For example, perhaps there is nothing wrong with their 

data and their sample was merely different. Students should not feel that they will be penalized for 

getting a “wrong” answer (Dolan, 2016). A group discussion with the students along the lines of what 

was discussed above is very helpful for developing their understanding. How effective these different 

approaches will be in educating students about confirmation bias needs to be determined rigorously 

in a classroom setting with proper controls.  

 

It is likely that some kinds of course-based research projects are more susceptible to confirmation 

bias than others, and those are the projects that are particularly in need of mentoring on this issue. 

Course-based research projects can consist of a single laboratory exercise or take an entire 

quarter/semester or more (Auchincloss et al., 2014; Dolan, 2016), but the duration of the activity is 

probably less likely to matter in terms of confirmation bias than other factors. As discussed earlier, 

the type of hypothesis is probably the most impactful, because some hypotheses lend themselves to 

drive an answer in a particular direction. The type of hypothesis is more likely to matter than the 

source of the hypothesis (e.g., provided by the instructor, or generated by the student). For student-

generated hypotheses, part of the mentoring could include a discussion with the student on whether 

the hypothesis might lend itself to confirmation bias or not. Mentorship in the topic of confirmation 

bias will also be beneficial to students as it adds to a student’s critical thinking skillset, which can be 

used when interpreting the research done in the literature or in planning their own future 

experiments. 

 

Conclusion 

While course-based research provides many benefits to both students and instructors, we have 

shown evidence of confirmation bias, in that the student-generated data were affected by the 

hypothesis being tested. Instructors should be aware of the possibility of bias, design course-based 

research activities in ways that reduce this risk, and mentor the students about this topic. 
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